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A Note on Computing the Asymptotic Form

of a Limited Sequence of Decision Trees

Nicholas V. Findler, Neal Mazur, and Bede McCall

Group for Computer Studies of Strategies

Department of Computer Science

State University of New York at Buffalo

It is often desirable to compute the asymptotic form of a

limited sequence of decision trees (DT's) after the set of

decision variables has reached a stable, constant membership.

Such is the case when the DT's characterize the evolving behavior

of a learning strategy in the Quasi-Optimizer system under

development.

An algorithm is described which builds the asymptotic

decision tree in breadth-first order, node-by-node, starting at

the root. In the course of computing the asymptotic value of a

node (that is, its out-degree and the limiting points of its

subranges), three situations may arise:

(i) the computation is possible;

(ii) the computation seems to be possible but more DT's

have to be acquired of the evolving strategy to reach

the desired level of statistical significance;

(iii) the computation is not possible.
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INTRODUCTION

Decision-trees (DT's) are often used to describe both

deterministic and stochastic, multistage decision processes.

Figure 1 shows schematically such a DT. The x .'s are the

decision variables, each associated with one level of the tree.

The subrange into which the current value of the decision

variable falls determines which branch emanating from the node at

that level is followed. Thus any given combination of values of

the decision variables leads to a particular terminal node (or

leaf) associated with a certain action, a..

FIGURE 1 ABOUT HERE

In a previous article [1], we have defined the complexity of

DT's and the power of heuristic rules employed in processing

them. We have also outlined the Quasi-Optimizer (QO) system

under development, which aims at generating automatically

descriptive theories of competitive strategies and a normative

theory that would be optimum in the statistical sense against a

given set of strategies.

We have reported in a second article [2] on the completion

of the first phase of the QO project. We have constructed a

program called galI, which builds a model, in the form of a DT, of

a static strategy given as an impenetrable "black box" program.

The strategy being modelled is asked what it would do in

situaions covering the space of competition. A tsituation' is

specified in terms of the history of confrontations and the

current values of the decision variables that the strategy
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considers relevant. The action selected by the strategy is one

from among all legally possible actions. We assume for the sake

of generality that the situation is described by three types of

information: numerical (including rank numbers), symbolic

(attributes, categories), and structural data (hierarchies,

relationships, context-dependent priorities). The model building

program accepts as input an ordered list of all possible decision

variables as well as the total range of and the minimum

discernible difference between the values of each decision

variable. The program can produce the result in two forms: the

Minimum-Depth Decision Tree (MDDT) or the Normalized Decision

Tree (NDT). The former contains levels associated with only

those decision variables that are found to be statistically

relevant for the strategy being modelled. The latter contains

the union of the sets of variables represented in the MDDT's of

.seeral strategies and, therefore, all NDT's of these strategies

are of uniform depth. This is accomplished by inserting levels

of non-branching nodes (out-degree 1) in an MDDT corresponding to

decision variables relevant to at least one other strategy. In

the present paper, a DT will refer to a single strategy and will

be of the MDDT-type.

One of the several problems arising in the QO project

concerns strategies that vary over time. Such phenomena could be

random fluctuations, cyclic variations, a monotonic tendency or

some combinations of the above. The case of monotonic tendencies

is particularly important since learning strategies exhibit such

behavior. (There is, of course, also some additional noise due

to different reasons, such as latent variables and stochastic

components in the environment, measurement errors in the



T4

modelling process, etc.)

In order to generate the normative theory against its

competitors, it is necessary for the QO program to know the

asymptotic form (AF) of learning strategies. One would like to

be able to compute a sufficiently precise estimate of the AF

rather than to wait indefinitely long until a learning strategy

becomes "reasonably" constant. We describe in the following a

technique for computing such an estimate.

THE TECHNIQUE

Let the QO program be able to interrupt the learning process

at certain time points, "freeze" the strategy in that form and

take a "snapshot" of it, that is let 00Q1 construct a sequence of

descriptive theories of the evolving strategy as a DT. Suppose

we have ks such DT's constructed so far. We would like to make

one of the following three statements on that basis:

Mi The AF can be expressed as a computable DT.

(ii) Take M more snapshots as the statistical evidence so

far is "promising" but not sufficient.

(iii) There is no statistical evidence so far that the

(assumedly) learning strategy converges to a

computable one.

There are three entities in DT's that can vary over time:

the members of the set of decision variables that appear

to be statistically relevant in any given sn apshot;

the out-degrees of every node in a DT;

the location of the limiting points between the

subranges each of which corresponds to a branch emanating

from the parent node. (See Figure 2; the total range or

4......
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the values of decision variable . is normalized to

0-100.)

FIGURE 2 ABOUT HERE

It is obvious that the above three entities are strongly

related -- for example, one cannot refer to a stable condition

concerning the subranges Of the decision variable values unless

the out-degrees of the parent nodes are constant over time.

Let us for the sake of explanation assume that the total

range of each decision variable is normalized to (0, 100). (This

also means that symbolic and structural data can be mapped onto

such a numerical scale.)

The algorithm used is now described informally. The

Appendix contains a more formal version written in a PASCAL-like

communication language, augmented with some comments.

Suppose a learning strategy improves its level of

performance through a series of confrontations. Let

confrontations comprise a cyle After each cycle, learning is

"turned off" and Q01 takes a snapshot of the strategy rendered

temporarily static. The user estimates that K such snapshots] (i.e. learning through K*T confrontations) will be sufficient to
compute the asymptotic form of the DT's.

If the set of decision variables has reached a stable,

constant m.emberhi~ only in L snapshots, out of the total .K(L)

snapshots, some more cycles of confrontation are needed.

Assuming a binomial distribution with p=L/K, the estimated number

of additional snapshots to be taken is
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E= K/L*(K-L)

in order to get a total of about JK snapshots with constant

membership. (The most frequently occurring set of decision

variables is considered the asymptotic membership.) If the

membership is still unstable after having tried taking the

additional sequence of snapshots, the computation is abandoned.

After a constant set of decision variables is found in a

sufficient number of snapshots, the gradual build-up of the

asymptotic decision tree (ADT) takes place, node-by-node,

breadth-first, starting at the node. For every node being

considered, the result of the computation can be

(i) satisfactory, in which case it is appended to ADT

built so far;

(ii) satistically "promising" but not significant enough,

in which case additional snapshots are taken the

number of which is estimated on the basis of the

convergence rate obtained;

(iii) unsatisfactory, in which case failure is reported.

A node, characterized by two subscripts, its level number

and its ordinal number from the left, is "computed" when the

asymptotic values of the out-degree (the number of branches

emanating from it) and of the location of the boundary points

between adjacent subranges of the decision variable in question

are known. Thcse numerical values are found by using for each a

function E.XPL that extrapolates from known values. It fits two

"envelope" curves of the y=al.exp(-cl.x)+b I and y=a 2 .exp(-c 2.x)+b 2

type. (The envelope curves contain in between the two of them

all datapoints.) The asymptotic value sought is y,= (b1 +b2 )/2

In fact, the computational result referred to above,
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"statistically promising", is related to a rate of convergence

less than a threshold value. (We note that the actual method of

fitting the envelope functions is somewhat more complicated than

the algorithm in the Appendix suggests.)

Once the asymptotic value of the node's out-degree has been

found, it is imposed to every corresponding node in the sequence

of snapshots. This is done by using the principle of maximum

sensitivity over the whole range of the decision variable.

Namely, when the snapshot node's out-degree is less than the

asymptotic value, the longest subrange of the node variable is

halved, with both halves getting the same subtree, until the

out-degree so obtained equals the asymptotic value. In the

opposite case, in which the snapshot node's out-degree is to be

reduced, those adjacent subranges are merged whose combined

length is the shortest, until the out-degree so obtained is equal

to the asymptotic value. The newly created subrange gets the

subtree of that original subrange of the two which was the longer

one. (The other disappears.)

The boundary points between these "synthetic" subranges are

then extrapolated by E to complete the calculation of the

asymptotic node, which is finally appended onto the ADT being

built.

SOME EXAMPLES

The algorithm, outlined in a PASCAL-like language in the

APPENDIX, was programmed in LISP. However, one part of the

program, which does the extrapolation of a sequence of integers,

is in FORTRAN. (In fact, the routine that fits exponential

curves has been adopted from the BMDP package [3].)



The interface between LISP and FORTRAN is implemented in a way

appropriate for tasks in which an infrequent exchange of a small

number of numerical values is needed between tw o programs in the

respective languages. (The interface is briefly described in the

paper on Q01, [2].) LISP establishes a file for data exchange and

provides on it two lists of integers, the X and Y values of the

datapoints to be extrapolated (as well as a control statements file

to be executed by the system). The FORTRAN program then takes over,

fits the envelope functions as defined in the Appendix, and computes

the asymptotic value of the sequence of integers. (The algorithm

used for it is somew:iat complicated and is beyond the scope of this

paper.) The value returned is either an integer, in case of

convergence; the message 'PROMISING', in case the asymptotic value

cannot (as yet) be computed but the rate of convergence is more than

a certain threshold value; the message 'UNDEFINED' in case there is

no well-defined, unique value to which the sequence tends; or the

message 'DIVERGENT' if that is the case.

The sequence of trees, the "snapshots", were not generated by

Q01 for the examples below. In order to be able to show the

performance of 002 in all possible cases, we have programmed

tree-generating functions which are flexible and easily adjustable

so that we could compare the results of Q02 with the outcomes

expected a priori.

The output by the program Q02 consists of three types of

information:

.the sequence of DT's input;

.the calls to and results of the EXTRAPOLATE function;



.the final result, that is the asymptotic tree -- possibly

preceded by the message 'PROMISING' and additional DT snapshots

yielding a convergent sequence of trees -- or one of the messages

'UUDEFINED' and 'DIVERGENT'.

At each call to EXTRAPOLATE, the program also prints the

sequence of integers to extrapolated, and parameters . , b and -c of

the upper and lower envelope functions fitted. These are of the

form

y a . exp (-c . x) + b

The trees are printed in a format corresponding to their

internal representation. The list of nodes at each level is

prefixed by the symbolic name of the decision variable. The values

of these decision variables are discriminated at the parent node of

this level. The branches emanating from the parent node point to

tiie subranges of values, as shown on Fig. 2. The name of the

recision variable is followed by a list of nodes with each node

consisting of two lists. The first one consists of the parent

node's position description followed by the rank-number-from-the-

left of the node in question (among the parent node's children).

The root node's position description is (0 1). Therefore, the

position description of the level 1 nodes are : (0 1 1), (0 1 2),

(0 1 3), ..... The second list of the node gives the lower and

upper boundary points of the subrange of values of this decision

variable that the node represents. The subrange specification is

replaced at the last (leaf) level by the strategy response. (The

reserved symbol 'R' is then in the place of the decision variable

name.)
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Cese Niunbers 1 and 2: Result Promising, and then Convergent

(SNAPSHOTS TESTPR)

SNAPSHOT 1

((A (0 1))
(C ((0 1 1) (1 31)) ((0 1 2) (32 100)))
(D ((0 1 1 1) (1 69))

((0 1 1 2) (70 100))
((0 1 2 1) (1 13))
((0 1 2 2) (14 26))
((0 1 2 3) (27 100)))

(R ((0 1 1 1 1) (15))
((0 1 1 2 1) (19))
((0 1 2 1 1) (54))
((0 1 2 2 1) (55))
((0 1 2 3 1) (85))))

SNAPSHOT 2

((A (0 1))
(B ((0 1 1) (1 25)) ((0 1 2) (26 49)) ((0 1 3) (50 100)))
(C ((0 1 1 1) (1 56))

((0 1 1 2) (57 78))
((0 1 1 3) (79 100))
((0 1 2 1) (1 56))
((0 1 2 2) (57 78))
((0 1 2 3) (79 100))

((0 1 3 1) (1 12))
((0 1 3 2) (13 100)))

(D
((O 1 1 1 1) (1 35))
((0 1 1 1 2) (36 100))
((0 1 1 2 1) 1 43))
((0 1 1 2 2) (44 100))
((0 1 1 3 1) (1 43))
((0 1 1 3 2) (44 100))
((0 1 2 1 1) (1 35))
((0 1 2 1 2) (36 100))
((0 1 2 2 1) (1 43))
((0 1 2 2 2) (44 100))
((0 1 2 3 1) (1 43))
(O 1 2 3 2) (44 100))
((0 1 3 1 1) (1 78))
((0 1 3 1 2) (79 100))
((0 1 3 2 1) (1 68))
((0 1 3 2 2) (89 100)))

(R
((0 1 1 1 1 1) (7)
((0 1 1 1 2 1) (22))
((0 1 1 2 1 1) (23))
((0 1 1 2 2 1) (29))
((0 1 1 3 1 1) (24))
((0 1 1 3 2 1) (30))

i[ ; .. .. ......A
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(0 1 2 1 1 1) (8))
(0 1 2 1 2 1) (23))
(0 1 2 2 1 1) (24))
(O 1 2 2 2 1) (30))
(0 1 2 3 1 1) (25))
(0 1 2 3 2 1) (31))

((0 1 3 1 1 1) (43))
(0 1 3 1 2 1) (63))
(0 1 3 2 1 1) (67))

((0 1 3 2 2 1) (88))))

SNAPSHOT 18

(A (0 1))
(B (0 1 1) (1 43)) ((0 1 2) (44 100)))
(C ((0 1 1 1) (1 57))

HO 1 1 2) (58 100))
(O 1 2 1) (1 31))
(O 1 2 2) (32 100)))

(R (O 1 1 1 1) (15))
((0 1 1 2 1) (31))
(O 1 2 1 1) (61))
(O 1 2 2 1) (83))))

SNAPSHOT 19

((A (0 1))
(B ((0 1 1) (1 3811 ((0 1 2) (39 100)))
(C (O 1 1 1) (1 59))

(O 1 1 2) (60 100))
((0 1 2 1) (1 31))
(O 1 2 2) (32 100)))

IR ((0 1 1 1 1) (14))
((0 1 1 2 1) (29))
((0 1 2 1 1) (59))
((0 1 2 2 1) (83))))

SNAPSHOT 20

((A (0 1))
(B (0 1 1) (1 42)) ((0 1 2) (43 100)))
(C (0 1 1 1) (1 61))

(0 1 1 2) (62 100))
(0 1 2 1) (1 30))
((0 1 2 2) (31 100)))

(R ((0 1 1 1 1) (13))
1(0 1 1 2 1) (29))
((0 1 2 1 1) (60))
((0 1 2 2 1) (84))))
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? (RUNPR)

THE STABLE SET OF DECISION VARIABLES IS: (A B C R)

THEREFORE. THE SNAPSHOTS WITH ORDINAL NUMBERS IN (1 2 6 16) HAVE
BEEN TEMPORARILY DELETED.

CALL TO EXTRAPOLATE

EXTRAPOLATING THE OUTDEGREE OF THE NODE WITH
RANK-FROM-LEFT I IN LEVEL C JDECISION VARIABLE A ).

SEQUENCE OF INTEGERS : (4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2)

<ASYMPTOTIC VALUE = 1.8255 >

EXTRAPOLATE RETURN VALUE : 2

CALL TO EXTRAPOLATE

EXTRAPOLATING THE SUBRANGE OF THE NODE WITH
RANK-FROM-LEFT I IN LEVEL 1 (DECISION VARIABLE B ).

SEQUENCE OF INTEGERS : 157 26 26 53 50 32 35 45 46 36 44 38 37 43 38 42)

------ ENVELOPE PARAMETER VALUES------

HIGH: 29.301661 -.040230 40.500000

LOW -26.918121 -. 152155 38.578933

----- DERIVATIVES AT ENDPOINTS-----

UPPER = -.527241 LOWER = .195312

<PROMISING>

EXTRAPOLATE RETURN VALUE PROMISING

* .w i.
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ADDING 2 MORE TREES

SNAPSHOT 21

((A (0 1))
(B ((0 1 1) (1 43)) ((0 1 2) (44 100)))
(C ((0 1 1 1) (1 59))

((0 1 1 2) (60 100))
((0 1 2 1) (1 31))
((0 1 2 2) (32 100)))

IR ((0 1 1 1 1) (16))

((0 1 1 2 1) (29))
((0 1 2 1 1) (61))
((0 1 2 2 1) (84))))

SNAPSHOT 22

((A (0 1))
(B ((0 1 1) (1 40)) ((0 1 2) (41 100)))
(C ((0 1 1 1) (1 58))

((0 1 1 2) (59 100))
((0 1 2 1) (1 31))
((0 1 2 2) (32 100)))

(R ((0 1 1 1 1) (13))
((0 1 1 2 1) (30))

((0 1 2 1 1) (60))
((0 1 2 2 1) (83))))

CALL TO EXTRAPOLATE

EXTRAPOLATING THE RESPONSE OF THE NODE WITH

RANK-FROM-LEFT I IN LEVEL 3

SEQUENCE OF INTEGERS (4 23 22 9 10 18 12 15 16 14 14 16 13 15 14 13 16
13)
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----ENVELOPE PARAMETER VALUES-------

HIGH: 24.868774 -.278260 15.967479

LOW : -10.714954 -.131484 13.268462

----DERIVATIVES AT ENDPOINTS------

UPPER =-.015187 LOWER =.078091

----- <ASYMPTOTIC VALUE =14.6180 >

EXTRAPOLATE RETURN VALUE :15

CALL TO EXTRAPOLATE

EXTRAPOLATING THE RESPONSE OF THE NODE WITH
RANK-FROM-LEFT 4 IN LEVEL 3.

SEQUENCE OF INTEGERS : (98 94 75 76 89 77 80 87 82 79 85 83 84 83 83 84
84 83)

----ENVELOPE PARAMETER VALUES-------

HIGH: 17.338924 -.095370 83.666667

LOW : -19.183673 -.118447 83.113417

----DERIVATIVES AT ENDPOINTS ------

UPPER - -.202873 LOWER a.167787

----- <ASYMPTOTIC VALUE 8 3.3900 >

EXTRAPOLATE RETURN VALUE :83
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THE ASYMPTOTIC FORM OF THE DECISION TREES IS:

((A (0 1))
(B ((0 1 1) (1 40)) ((0 1 2) (41 100)))
(C ((0 I 1 1) (1 59))

4(0 1 1 2) (60 100))
(0 1 2 1) (1 31))

((0 1 2 2) (32 100)))
(R (0 1 1 1 1) (15))

((0 1 1 2 1) (29))
((0 1 2 2 1) (61))
(0 1 2 2 1) (83))))
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Case Number 3: Result Undefined

?(SNAPSHOTS TESTUN)

SNAPSHOT 1

((A (0 1))
(B ((0 1 1) (1 54)) ((0 1 2) (55 77)) ((0 1 3) (78 100)))
(D ((0 1 1 1) (1 52))

((0 1 1 2) (53 1oo))((O 1 2 11 (1 8))
((0 1 2 2) (9 1oo))
((0 1 3 1) t1 8))
((0 1 3 2) (9 100)))

(R ((0 1 1 1 1) (16))
((0 1 1 2 1) (18))
((0 1 2 1 1) (52))
((0 1 2 2 1) (95))
((0 1 3 2 1) (53))
((0 1 3 2 1) (96))))

SNAPSHOT 2

((A (0 1))
(C ((0 1 1) (1 10)) ((0 1 2) (11 20)) ((0 1 3) (21 100)))
(D ((0 1 1 1) (1 74))

((0 1 1 2) (75 100))
((0 1 2 1) (1 74))
((0 1 2 2) (75 100))
((O 1 3 1) (1 6))
((0 1 3 2) (7 100)))

(R ((0 1 1 1 1) (18))
((0 1 1 2 1) (35))
((0 1 2 1 1) (19))
((0 1 2 2 1) (36))
((0 1 3 1 1) (68))
((0 1 3 2 1) (91))))

SNAPSHOT 3

((A (0 1))
(B ((0 1 1) (1 21)) ((0 1 2) (22 41)) ((0 1 3) (42 100)))
(C ((0 1 1 1) (1 12))

((0 1 1 2) (13 24))
((0 1 1 3) (25 100))
((O 1 2 1) (1 12))

((0 1 2 2) (13 24))
((0 1 2 3) (25 1O0))
((0 1 3 1) (1 60))
((0 1 3 2) (61 70))
((0 1 3 3) (71 80))
((0 1 3 4) (81 100)))

(R ((0 1 1 1 1) (31))
((0 1 1 2 1) (32))
((0 1 1 3 1) (35))
((0 1 2 1 1) (32))
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SNAPSHOT 20

((A (0 1))
(B ((0 1 1) (1 29)) ((0 1 2) (30 100)))
(C ((0 1 1 1) (1 37))

((0 1 1 2) (38 100))
((0 1 2 1) (1 41))
((0 1 2 2) (42 100)))

(R ((0 1 1 1 1) (20))
((0 1 1 2 1) (44))
1(0 1 2 1 1) (56))
((0 1 2 2 1) (89))))

SNAPSHOT 21

((A (0 1))
(B ((0 1 1) (1 30)) ((0 1 2) (31 100)))
(C ((0 1 1 1) (1 36))

((0 1 1 2) (37 100))
((0 1 2 1) (1 25))
((0 1 2 2) (26 100)))

(R ((0 1 1 1 1) (16))
((0 1 1 2 1) (45))
((0 1 2 1 1) (59))
((0 1 2 2 1) (92))))

SNAPSHOT 22

((A (0 1))
(B ((0 1 1) (1 28)) ((0 1 2) (29 100)))
(C ((0 1 1 1) (1 40))

((0 1 1 2) (41 100))
((0 1 2 1) (1 22))
((0 1 2 2) (23 100)))

(R ((0 1 1 1 1) (19))
((0 1 1 2 1) (47))
((0 1 2 1 1) (58))
((0 1 2 2 1) (88))))



-18-

? (RUNUN)

THE STABLE SET OF DECISION VARIABLES IS: (A B C R)

THEREFORE. THE SNAPSHOTS WITH ORDINAL NUMBERS IN (1 2 8 19) HAVE
BEEN TEMPORARILY DELETED.

CALL TO EXTRAPOLATE

EXTRAPOLATING THE OUTDEGREE OF THE NODE WITH
RANK-FROM-LEFT I IN LEVEL 0 (DECISION VARIABLE A ).

SEQUENCE OF INTEGERS : (3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)

<ASYMPTOTIC VALUE 1.8871 >

EXTRAPOLATE RETURN VALUE : 2

CALL TO EXTRAPOLATE

EXTRAPOLATING THE SUBRANGE OF THE NODE WITH
RANK-FROM-LEFT 1 IN LEVEL 2 (DECISION VARIABLE C ).

SEQUENCE OF INTEGERS : (24 29 46 46 32 45 41 37 42 35 36 42 35 41 41 37
36 40)

------- ENVELOPE PARAMETER VALUES------

HIGH: 13.458370 -. 139997 41.182370

LOW : -13.539677 -. 152142 36.186914

----- DERIVATIVES AT ENDPOINTS -----

UPPER = -. 086599 LOWER , .072481

<ASYMPTOTIC VALUE a 38.6846 >

EXTRAPOLATE RETURN VALUE : 39

Jkd
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CALL TO EXTRAPOLATE

EXTRAPOLATING THE SUBRANGE OF THE NODE WITH
RANK-FROM-LEFT 3 IN LEVEL 2 (DECISION VARIABLE C ).

SEQUENCE OF INTEGERS : (60 55 15 19 47 20 21 43 23 22 43 44 25 22 43 41
25 22)

------ ENVELOPE PARAMETER VALUES------

HIGH- 20.923879 -. 127042 42.412263

LOW -28.615767 -.259073 22.095785

------ DERIVATIVES AT ENDPOINTS-----

UPPER -.162469 LOWER = .024815

<UNDEFINED>

EXTRAPOLATE RETURN VALUE : UNDEFINED

(TREES FAIL TO CONVERGE AS THE ASYMPTOTIC TREE IS UNDEFINED)
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Case Number 4: Result Divergent

?(SNAPSHOTS TESTDI)

SNAPSHOT 1

((A (0 1))
(B ((0 1 1) (1 27)) ((0 1 2) (28 100)))

(C ((0 1 1 1) (1 69))
((0 1 1 2) (70 85))
((0 1 1 3) (86 100))
((0 1 2 1) (1 11))
((0 1 2 2) (12 100)))

(D

((0 1 1 1 1) (1 27))
((0 1 1 1 2) (28 100))
((0 1 1 2 1) (1 9))
((0 1 1 2 2) (10 18))
((0 1 1 2 3) (19 100))
((0 1 1 3 1) (1 9))

((0 1 1 3 2) (10 18))

((0 1 1 3 3) (19 100))

((0 1 2 1 1) (1 62))
((0 1 2 1 2) (63 100))

((0 1 2 2 1) (1 70))

((0 1 2 2 2) (71 100)))
(R
((0 1 1 1 1 1) (13))
((0 1 1 1 2 1) (25))

((01 1 2 1 1) (42))
((0 1 1 2 2 1) (43))
((0 1 1 2 3 1) (30))
((0 1 1 3 1 1) (43))

((0 1 1 3 2 1) (44))
(tO 1 1 3 3 1) (31))

(0 1 2 1 1 1) (47))
((0 1 2 1 2 1) (53))
((0 1 2 2 1 1) (78))

((0 1 2 2 2 1) (75))))

SNAPSHOT 2

((A (0 1))
(9 ((0 1 1) (1 54)) ((0 1 2) (55 77)) ((0 1 3) (78 100)))

(M (0 1 1 1) (1 52))
((0 1 1 2) (53 100))
(0 1 2 1) (1 8))

((0 1 2 2) (9 100))
(0 1 3 1) (1 8))

((0 1 3 2) (9 100)))
CR ((0 1 1 1 1) (16))

((0 1 1 2 1) (18))
((0 1 2 1 1) (52))
((0 1 2 2 1) (95))
((0 1 3 1 1) (53))

((0 1 3 2 1) (96))))
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SNAPSHOT 22

((A (0 1))
(B ((0 1 1) (1 25)) ((0 1 2) (26 71)) ((0 1 3) (72 100)))
(C ((0 1 1 1) (1 42))

((0 1 1 2) (43 100))
((0 1 2 1) (1 27))
((0 1 2 2) (28 100))
((0 1 3 1) (1 71))
((0 1 3 2) (72 100)))

(R ((0 1 1 1 1) (24))
((0 1 1 2 1) (35))
((0 1 2 1 1) (45))
((0 1 2 2 1) (61))
((0 1 3 1 1) (77))
((0 1 3 2 1) (96))))

SNAPSHOT 23

((A (0 1))
(B ((0 1 1) (1 26)) ((0 1 2) (27 72)) ((0 1 3) (73 100)))
(C ((0 1 1 1) (1 44))

((0 1 1 2) (45 100))
((0 1 2 1) (1 29))
((0 1 2 2) (30 100))
((0 1 3 1) (1 68))
((0 1 3 2) (69 100)))

(R ((0 1 1 1 1) (23))
((0 1 1 2 1) (97))
((0 1 2 1 1) (47))
((0 1 2 2 1) (59))
((0 1 3 1 1) (81))
((0 1 3 2 1) (93))))

SNAPSHOT 24

((A (0 1))
(B ((0 1 1) (1 24)) ((0 1 2) (25 69)) ((0 1 3) (70 100)))
(C ((0 1 1 1) (1 45))

((0 1 1 2) (46 100))
((0 1 2 1) (1 27))
((0 1 2 2) (28 100))
((0 1 3 1) (1 68))
((0 1 3 2) (69 100)))

IR ((0 1 1 1 1) (26))
((0 1 1 2 1) 437))
((0 1 2 1 1) (45))
((0 1 2 2 1) (61))
((0 1 3 1 1) (76))
((0 1 3 2 1) (95))))
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? (RUNDI)

THE STABLE SET OF DECISION VARIABLES IS: (A B C R)

THEREFORE, THE SNAPSHOTS WITH ORDINAL NUMBERS IN (1 2 8 15) HAVE
BEEN TEMPORARILY DELETED.

CALL TO EXTRAPOLATE

EXTRAPOLATING THE OUTDEGREE OF THE NODE WITH
RANK-FROM-LEFT I IN LEVEL 0 (DECISION VARIABLE A ).

SEQUENCE OF INTEGERS : (4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3)

<ASYMPTOTIC VALUE = 2.9186 >

EXTRAPOLATE RETURN VALUE : 3

CALL TO EXTRAPOLATE

EXTRAPOLATING THE SUBRANGE OF THE NODE WITH
RANK-FROM-LEFT 1 IN LEVEL 1 (DECISION VARIABLE B .

SEQUENCE OF INTEGERS : (41 13 18 33 22 30 32 22 25 29 27 25 24 28 26 25
27 25 26 24)

------ ENVELOPE PARAMETER VALUES------

HIGH: 15.223042 -.122477 27.527096

LOW -64.396551 -.431457 22.559358

-----DERIVATIVES AT ENDPOINTS-----

UPPER = -.098621 LOWER = .000884

<ASYMPTOTIC VALUE = 25.0432 >

EXTRAPOLATE RETURN VALUE : 25
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CALL TO EXTRAPOLATE

EXTRAPOLATING THE RESPONSE OF THE NODE WITH
RANK-FROM-LEFT 1 IN LEVEL 3

SEQUENCE OF INTEGERS : (37 17 31 31 19 26 29 20 24 26 21 25 25 24 25 22
24 24 23 26)

------ ENVELOPE PARAMETER VALUES------

HIGH: 12.922351 -. 140409 25.826385

LOW : -12.397016 -.133827 22.844423

----- DERIVATIVES AT ENDPOINTS-----

UPPER = -.062409 LOWER = .066830

<ASYMPTOTIC VALUE = 24.3354 >

EXTRAPOLATE RETURN VALUE : 24

CALL TO EXTRAPOLATE

EXTRAPOLATING THE RESPONSE OF THE NODE WITH
RANK-FROM-LEFT 2 IN LEVEL 3

SEQUENCE OF INTEGERS : (25 31 44 47 35 47 48 36 35 54 57 37 35 68 72 36
84 35 97 37)

<DIVERGE>

EXTRAPOLATE RETURN VALUE DIVERGE

(TREES DIVERGE)
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FINAL COMMENTS

The ability of the Quasi-Optimizer system has been extended

so that it can create a model, a i theory, of not only

static but also learning strategies. It does so by extrapolating

a sequence of snapshots taken of a learning strategy, rendered

temporarily static, at different times.
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APPETDIX

Th Iorithn To Compute Ihe Asymptotic Form

of a.Linited Sequence of Decision T

function Q02 ( function STRAT, Q01;

inteea snapshots-needed, learning-cycle-length);

{Q02 receives a learning strategy, STRAT, and a function Q01. Q01

makes a computer model, a "snapshot", of STRAT in the form of a

decision tree at the end of each learning cycle when learning is

temporarily disabled. The user also provides his estimate of how

many snapshots are needed, i.e. the length of the sequence of

decision trees to extrapolated, and how many confrontations are

needed in a learning cycle to make a significant change in the

strategy.)

sequence-of-trees := empty;

take-snapshots (snapshots-needed, learning-cycle-length,

sequence-of-trees);

find-stable-set-of-decision-variables (sequence-of-trees,

snapshot-numbers-of-trees-with-stable-set);

if result i undefined

then

compute-asymptotic-tree (sequence-of-trees);

return (result)

J {Q02)
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Dcocedvur- take-snapshots (snapshots-needed,

learning-cycle-length, sequence-of-trees);

let-ST1RAT-learn-over-.a-learning-.cycle;

take-a-snapshot-by-QO1;

add -to-the -seq u nce -of-trees

u~ntil no-more-snapshots-needed;

return (sequence-of-trees)

g~d (take-snapshots)



-A3-

procedure find-stable-set-of-decision-variables (sequence-

of-trees, snapshot-numbers-of-trees-with-stable-set);

rnaxvalue := 0;

classnumber := 0;

for each tree in sequence-of-trees do

beain

add-snapshot-number-of-tree-to-the-class-with-that-

set-of-decision-variables;

classnumber := classnumber + 1

(Establish classes of trees, each tree in a class having the

same set of decision variables.)

for each class of trees of constant set do

if value-of-class (classnumber) > maxvalue

(record best class so far)

raxclass class (classnumber);

maxvalue value-of-class (classnumber)

{ (record best class so far)

{The class with maximum value-of-class is selected.)

if maxvalue > class-threshold-value

beg (assign results)

sequence-of-trees := maxclass;

snapshot-numbers-of-trees-with-stable-set : snapshot-

numbers-of-trees-in-maxclass

end (assign results)

{If the value of the "best" class of trees was greater than a

threshold value, output the list of trees and the list of their

snapshot numbers in that class.)
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9jUs .if (trees-added-mrore-than-ti ice)

then result := undefined

else

be{in (repeat with a longer sequence of trees)

add-more-snapshots (sequence-of-trees, maxclass);

find-stable-set-of-decision-variables (sequence-of-

trees, snapshot-numbers-of-trees-with-stable-set)

end {repeat with a longer sequence of trees)

{If the value of the best class was less than satisfactory,

additional trees (snapshots) can be added twice to the original

sequence of trees and the conputation is repeated. Otherwise, the

result of the computation of the asymptotic form is undefined.}

9_ (find-stable-set-of-decision-variables)

- - - II - - - .. . . . . ..
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function value-of-class (classnumber);

n := number-of-trees-in-class;

value := 0;

for each ordinal nuraber of tree in the class, i, do

value := value + exp(i);

value-of-class := c(n) * value + t(n)

end, [value-of-class}

(Here c(n) is a factor normalizing to one the sum of the weighting

(recency) factors, c(n) = (e - 1)/(exp(n + I) - e). The set of

decision variables of more recent trees are more credible, closer to

that of the asymptotic tree. The other term, t(n), assigns big3er

weight to a class with more trees. Note that the snapshot number of

a tree is its position in the total sequence of trees and not its

position in the class.)

A~i
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procedure add-more-snapshots (sequence-of-trees, maxclass);

k := total-number-of-trees-in-sequence;

n := number-of-trees-in-maxclass;

more-snapshots-needed := k (k/n - 1) * class-threshold-value/

value-of-class (maxclass);

take-snapshots (more-snapshots-needed, learnirg-cycle-length,

sequence-of-trees)

n (add-more-snapshots)

(The number of additional snapshots needed is calculated using the

assumption of binomial distribution (see main text), which is then

multiplied by the ratio between the minimum required and the current

value of the sequence of trees to be extrapolated.}

A,

~ A . ..... - - -
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.lunction coripute-asymptotic-tree (sequence-of-trees);

for each level of decision variable _do

for each node at this level DQ

begi {asymptotic node computation)

compute-asymptotic-form-of-node (level, rank-from-left);

if result = asymptotic-node

then append-to-asymptotic-tree (asymptotic-tree,

asymptotic-node)

e if result = promising and trees-added-less-than-twice

bfl

add-more-trees (snapshots-needed-before,

rate-of-convergence);

compute-asyptotic-tree (sequence-of-trees)

end

else

{ (set non-convergent result)

if result divergent

then result := undefined;

return (result)

end (set non-convergent result)

d (asymptotic node computation);

return (asymptotic-tree)

gjLd {compute-asymptotic-tree)

.!
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function corapute-asywmptotic-f orm-cf -node (level, rank-from-left);

extrapolate(oultdegree (node (level, rank-fromi-left), list-of-

snapshot-numrbers-of-trees-used);

iCsuccessful

be ,:in {compute asymptotic node)

asyniptotic-outdegree :=result;

begin [compute asymptotic values of boundary points

between subrangesi

iraipose-asyrn.ptotic-outdeg~ree-on-correspondi ng-node-in--

all-trees-used;

repeat (for all subranges except last)

extrapolate (upper-boundary-of-subrange

(subrange-number, node (level, rank-frow-left)),

list-of-snapshiot-numbers-of-trees-used);

asymptotic-boundary-point :=result;

add-asymptotic-zubrangc-boundary-to-li stL-of-

boundary-points

untlU riot successful oQr last subrange left

end; (compute asymptotic values of boundary points

between subranges)

result := asyraptotic-node

end;_ (compute asymptotic node)

retLurn (result)

gn, {corpute-asynptotic-formi-of-node}
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Pro _Qdure

1 r1 pose-asymptotic-outde-ree-on-corresponding-node-in-all-trees-

used (asyr~ptotic-outdegree, level, rank-from-left,

sequenc-of-trees);

for each corresponding node do

if node' s-outdegree < asyrnptotic-outdegree

while outdegrees differ doQ

halve-largest-subrange;

copy- subtree-for-both-hal yes

end

end

if node's-outdo-ree > asynptotic-outdegree

while outdegrees differ -d

b aai n

cornbi ne-adj acent-s;ubranges-wi th- shortest-

cr.libi ned- Iength;

keep-subtree-of-longer-subrange-only

9--s leave-subrarige-of-node

g~s { lnipose-asymptotic-outdegree-on-corresponding-node-in-all-

trees-used)
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funcon extrapolate (sequence-of-iintegcr-values,

list-of-snapshot-number);

{This function returns either the asymptotic value to which the

given sequence of integers converges, if it does converge; or the

term 'PROMISING' if more datapoints are needed to decide; or the

term 'UIDEFINED' if no well-defined asymptotic value can be found;

or the term ,DIVERGENTI when that is the case.)

list-of-y-values = sequence-of-integer-values;

list-of-x-values list-of-snapshot-numbers;

fit-upper-and-lower-envelope-functions (list-of-y-values,

list-of-x-values);

{The upper envelope function is : Y1 = Al * EXP (-Cl * X) + Bl, and

the lower envelope function is Y2 = A2 i:" EXP (-C2 * X) + B2,

where for all X :Y(X) > Y(X) _ Y2(X). The necessary and

sufficient conditions for the sequence of integer values to

converge are : C1 _ 0, C2 2 0, and jB1 -B21 . Ti, a threshold

value.1

successful := false;

i C1 < 0 pt C2 < 0

L eL result := divergent

el ise a (B1 - B2) > Ti
then if _ (YI,(XMAX)) > T2 .2j Y(Y2'(XHAX)) > T2

raeofYn1rec := (XHA >YXX T2

bein

rate-of-convergelce M(I'(XIIAX) -

Y2' (XIAX));

result : ,nising

LiP
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Sresult undefined;

ele

result := ron ((BI + B2/2));

successful := true

end

.rgurn (result)

end- [extrapolate)

{If the sequence of integer values is not divergent and the

absolute value of the first derivative of at least one envelope

function at the last x-value is greater than (another) threshold

value, T2, then the result is 'PROMISING' and the rate of

convergence is equal to the absolute value of the difference

between the first derivatives of the two envelope functions at

the last x-value. Otherwise, if the final slopes of both

envelope functions are too small while the gap between the final

values is too large, the result is 'UNDEFINED'. Finally, in the

convergent case, the extrapolated value is the (rounded-off)

arithmetic mean of the asymptotic values of the two envelope

functions. We note that fitting envelope functions is quite

tricky and its description is beyond the scope of this paper.)
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Drocedure add-more-trees (snapshots-needed-before, rate-of-

convergence);

(This procedure is used when the result of an extrapolation to a

sequence of integer values was 'prorising'. In contrast, the

procedure 'add-more-snapshots' is invoked when there are not

enough trees in the "best" class of trees with identical decision

variables.}

more-snapshots-needed := beta * snapshots-needed before/

rate-of-convergence;

{The number of additional trees needed is directly proportional

to the number of snapshots taken so far and inversely

proportional to the rate of convergence found in the function

'extrapolate' producing 'promising' results. It should also be

noted that the proportionality factor, betais domain-dependent.

Its optimum value is a function of the trade-off between the

costs of invoking Q01, i.e. taking one more snapshot, and of

recomputing the envelope functions. If the former is high,

relatively speaking, the smallest possible number of additional

snapshots should be taken. If the relative cost of recomputing

envelope functions for all the out-degree and boundary point

values is high, it is better to overestimate the additional

number of necessary snapshots.)

take-snapshots (more-snapshots-needed, learning-cycle-length,

sequence-of-trees);

~{add-more-trees)



LEGEND FOR THE FIGURES

FIGURE 1 -- m Representation of A Static Deigion

Tree.

Each level of the tree is identified with one of

the decision variables x0 1X 1, ... xh. The leaves

attached to the branches at the last level, a1, a2,

... represent actions. A path down from to the

root to an action in the decision tree is defined

by a particular combination of values of the

decision variables and characterizes the

environment as perceived by the strategy which is

represented by the decision tree.

FIGURE 2 -- A Node and i a ae.ant Branch.

The range of the decision variable x-, associated

with the level of the node, j, is normalized to (0,

100). The node shown is the l-th from the left at

the j-th level. The branch emanating from the node

points to the k-th subrange from the left if Yk_1<xj

KYk with lk~r and Yo=O, Yr= 1 0 0 .0




